
Journal of  Alloys and Compounds, 211/212 (1994) 471-474 471 
JALCOM 141 

Computer simulation on phonon transport in crystals with defects 
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Abstract 

Molecular dynamics computer  simulation has been carried out to investigate phonon scattering in defect crystals 
at finite temperatures.  One-dimensional  mass-spring model crystals were used for the simulation. First, thermalization 
of input pulsed phonons  in an isolated crystal was studied. An equiparti t ion of phonon energies in the crystal 
was realized after a prolonged time, and thus a definite crystal temperature could be set up. Second, transport 
of pulsed phonons  in a mass-defect crystal was simulated to evaluate the thermal diffusivity of the crystal. 
Dependences  of the diffusivity on the crystal temperature,  on the input phonon frequency, on the defect mass 
and defect concentrat ion were investigated. 

1. Introduction 

The authors are studying a molecular dynamics com- 
puter simulation of phonon transport in one-dimensional 
mass-spring model crystals. The characteristics of our 
method are as follows: a transient phenomenon of 
propagation of pulsed phonons in the crystal is observed, 
the thermal diffusivity is determined, and the phonon 
scattering is investigated. In a previous paper [1], a 
preliminary study was described. The essential features, 
such as phonon dispersion, reflection of phonons, bal- 
listic propagation of phonons, and diffusive transport 
of phonons, could be observed. The method was then 
applied to layer-stacked crystals, and a numerical eval- 
uation was carried out for the case of thermal diffusivity 
of Langmuir-Blodgett films [2, 3]. The evaluation was 
compared successfully with our previous pulse-heating 
experiments on LB films of arachidic acid [4]. 

It is now intended to develop the simulation method 
to study phonon transport in crystals with defects. A 
trial is made for mass-defect crystals at various tem- 
peratures. First, the temperature must be set up, and 
then the diffusivity in the crystal is determined. A short 
report of our study has been presented [5], and further 
details of the temperature set-up method and a summary 
of the results obtained for simulated thermal diffusivity 
will be given here. 

2. Methods 

2.1. Models 
Two kinds of one-dimensional mass-spring chain, as 

shown in Fig. 1, are taken as the model crystals. 

2.1.1. Homogeneous crystal. The same masses (m), or 
atoms, are connected with the same springs. The number 
of atoms is 550, and the spacings between all atoms 
are the same (L). The springs are non-linear, and an 
anharmonic potential up to the fourth order is taken 
into account. The force acting on the ith atom from 
the neighbouring atoms is 

Fi = - C (I)(Di - D i -  1) - C (2)(Di - D i -  1) 2 - C (3)(Oi - Oi - 1) 3 

-b C(D(Di + 1 - D i )  q- C(2)(Di+ 1 - D i )  2 T C(3)(Di+ 1 - Di) 3 

(1) 
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Fig. 1. Model crystals used for simulation of phonon thermalization 
and phonon transport. 
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where Di is the displacement of the ith atom, and C O.) 
is the jth-order force constant. We choose the ratio 
C°):C~2):C(3)=I:-IO/L:IOO/L2, being consistent with 
a conclusion of the higher-order elasticity theory [6] 
and also able to produce a reasonable interatomic 
potential curve. 

2.1.2. Mass-defect crystal. Among the body atoms (m), 
a certain amount of defect atoms (m') are randomly 
distributed. The total number of atoms is 550 and the 
interatomic spacings and force constants are the same 
as in 2.1.1. To the right end of the crystal, another 
150-atom homogeneous crystal is connected, which acts 
as a heat sink for propagating phonons. 

2.2. Computation 
The method of molecular dynamics (MD) is adopted 

in the present study. The equation of motion for the 
ith atom with mass m is 

[d2D,~ 
m k - - ~ ) = F ,  (2) 

where T is the time. The equations for all of the atoms 
are numerically integrated by the Runge-Kutta-Gill 
method [7]. Displacement, velocity and kinetic energy 
of each atom are determined by the step-by-step method. 
A system of computational units (MD units), L = 1000, 
m = 1, C ° )=  1, is used, and a discrete time interval t 
(MD step) is taken. The maximum frequency of atomic 
vibration in a homogeneous harmonic crystal is [8] 
Vm = 1/rr for m = C ° )=  1, and the minimum period is 
Tr,~.=3.14. The MD step is here chosen as t=0.1, and 
the minimum period is Train=31.4 MD steps. 

3. Simulation 

3.1. Phonon state 
An input phonon pulse is applied to one end of a 

homogeneous isolated crystal. The pulse is composed 
of step functions with a triangular envelope (Fig. l(a)), 
and the frequency of the step-like vibrations is Vln. The 
number of vibrations contained in a pulse is 16-250 
for the lowest and highest input frequencies. The time 
variation of the atomic vibrational amplitude, D(T), is 
recorded for each of the atoms in the crystal. The 
computation is prolonged to the time To = 1.1 × 10 6 MD 
steps. Two stages of the computation are chosen: the 
early stage T= 0-(1/140)To and the later stage T--- (139/ 
140)To-To. Samplings of the amplitude values are made 
in these two stages, and the sampling interval is as 
short as (1/7.85)Train. The conventional discrete or 'fast' 
Fourier transform procedure is carried out using these 
sampled points to obtain a frequency spectrum of 
vibrational amplitude. Spectra for eight different atoms 
in the crystal are chosen, and then these are averaged. 

The amplitude D(v) thus obtained is squared and 
multiplied by ~ to obtain the frequency spectrum of 
the kinetic energy of atomic vibration. Obtained results 
are shown in Fig. 2 for various cases, where the left 
and the right figures represent those for the early and 
the later stages. 

Computation was first performed for the case of a 
harmonic crystal (C(2)=C(3)=0 in eqn. (1)), and the 
results were as shown in Figs. 2(a) and (a'). In the 
early stage (a), peaks appear corresponding to the input 
frequency vln and its overtones in the frequency spec- 
trum. It can be seen that the peaks continue in the 
later stage (a'). 

In the case of an anharmonic crystal, the peaks in 
the early stage (b) disappear in the later stage (b'). 
The frequency spectrum becomes almost uniform, which 
means that a thermalization of input phonons and an 
equipartition of phonon energies in the crystal are 
realized. The temperature of the crystal can be defined 
by the averaged energy. Apparently, the inclusion of 
lattice anharmonicity producing phonon-phonon in- 
teraction is needed for the phonon therrnalization. 

In the above two cases, the frequency of input phonons 
is rather low: Vln/Vm =0.061. The results for input phon- 
ons with higher frequency, Vl,/Um = 0.83, are shown in 
Figs. 2(c) and (c'). The observed behaviours are not 
well understood in this case. Phonon thermalization 
cannot be obtained even in the anharmonic crystal. 

In conclusion, thermalization of input phonons and 
setting of crystal temperature are successfully realized, 
when the lattice anharmonicity is included and input 
phonons not so high in frequency are used. 

3.2. Phonon transport 
Transport of pulsed phonons was simulated for the 

mass-defect model crystals shown in Fig. l(b). The 
crystal has been thermalized beforehand, and the same 
input phonon pulse as before is applied. The phonons 
propagate along the crystal and reach the heat sink at 
the right end of the crystal, and the heat sink eliminates 
the coming phonons. A transient propagation of phonons 
can thus be observed in the model crystal. 

The state of the propagating phonons is represented 
as follows. The crystal is divided into layers of 10 atoms, 
and the vibrational energies of each atom are averaged 
over the layer. The time (T) variation of the energy 
K is observed at the Xth layer, and the energy-versus- 
time data are as shown in Fig. 3. By analysing the data 
we can determine the thermal diffusivity of the crystal, 
as shown in our previous paper [2]. 

The simulation conditions for the cases shown in 
Fig. 3 are: 
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Fig. 2. Frequency spectra of phonons in various cases. The input phonon frequency is vi., and the maximum atomic vibrational 
frequency is Vm: (a, a ' )  harmonic,  VJVm=O.061; (b, b ' )  anharmonic;  vi,/v.,=O.061; (c, c ')  anharmonic,  vJvm=0.83. 

(a) The mass ratio is m'(defect)/m(body)=3. The 
defect concentration is 10%. The input phonon fre- 
quency is Vln/Vm =0.061. The crystal temperature is 6)0 
(arbitrary units). The observing position is X =  20. 

(b) The crystal temperature is 5.3 Oo. Other conditions 
are the same. Note that fluctuation in K vs. T is more 
marked in the high-temperature crystal. However, the 
determined diffusivity values are nearly the same for 
the above two cases, D = 4 . 0  (MD units): the thermal 
diffusivity is not sensitive to temperature in the case 

of the present mass-defect crystal. The phonon scattering 
that determines the diffusivity is mainly controlled by 
the crystal defects. 

Simulations to determine the diffusivity are now being 
carried out for various cases of the mass-defect crystal. 
In the present stage of the study, the following relation 
seems to hold for the diffusivity: 

D c~ [ 1 -  (~m)]1/2 X (~--~)-' × (-~) - '  (3) 
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Fig. 3. Transport of phonons in crystal at (a) low and (b) high 
temperatures, showing kinetic energyKversus time T. The smooth 
solid curves are the parameter-fitted ones to determine the thermal 
diffusivity. 

where v is the frequency of input phonons, Vm is the 
maximum phonon frequency of the crystal; N and N' 
are the total number of atoms in the crystal and the 
number of defect atoms; mav=m[(N-N')/N] +re'IN'~ 
N]; A m = m ' - r n , j  and here m and m' are the masses 
of body and defect atoms. 

The above result can qualitatively be explained by 
the relation 

Dotvl (4) 

which comes from the gas kinetics equation x=Cvl 
and the definition D = r/pC, where K is the thermal 
conductivity; C is the heat capacity per unit mass; p 
is the material density; v and l are the velocity and 
mean free path of phonons. It is considered that the 
first factor in the right-hand side of eqn. (3) represents 
the group velocity of phonons in a one-dimensional 
crystal; the second and third factors correspond to the 
mean free path controlled by the mass difference and 
the concentration of defect atoms [8]. The procedures 
of simulation to obtain the above result are rather 
lengthy, and details will not be presented here. 
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